Dietary Strategies to Reduce Hypocalcemia

Tina Kohlman, Dairy & Livestock Agent
UW-Extension Fond du Lac & Sheboygan Counties

Presented at the Fond du Lac County Forage Council’s 2014 Dairy-Forage Day
Friday, December 12, 2014

The Transition Period
- Most critical time in the life of a dairy cow
- Metabolism is in severe stress
- High nutrient demand to meet requirements for milk production
- Most susceptible to some diseases and metabolic disorders
 - Milk fever
 - Retained placenta
 - Displaced abomasum
 - Mastitis

Transition Period Goals
- High milk production
- Low incidence of metabolic disorders
- Minimum loss of immunological capacity
- Controlling or decreasing days to first ovulation
- Maintaining or enhancing fertility
- Low stillborn rate
- Healthy calves

Demand for Calcium

Calcium Demand Around Calving
- Start of Lactation Challenges
 - Colostrum and milk are very high in Ca
 - Cows must draw on bone Ca to survive
 - Negative Ca balance continues for first 2 months of lactation
- Failing to adapt:
 - 5% clinical milk fever
 - 47% subclinical milk fever in 2nd and greater lactations
 - Blood calcium ≤ 8 mg/dL
 - New cutpoint ≤ 8.5 mg/dL from calcium

The Start of Each New Lactation...
Prevalence of Milk Fever
- Jersey and Guernsey breeds are more susceptible
- Rarely occur in first calf heifers
- Incidences (Reinhardt, et al., National Animal Disease Center)
 - First Lactation 1%
 - 2nd Lactation 4%
 - 3rd Lactation 7%
 - 4th Lactation 10%
 - Total herd incidence 5%

Role of Calcium
- Skeleton tissue
- Smooth muscle
- Nerve function
- Immune function

Defining the Disease
- Hypocalcemia
 - Decline in calcium to which there is a loss of homeostatic function
 - Blood calcium typically below 5.0 mg/dL
 - Clinical signs:
 - Staggering
 - Cold ears
 - Lying in head tuck position
 - Categorized by symptoms
 - Stage 1: Early signs of milk fever without going down
 - Stage 2: Cows that are down but not flat on her side
 - Stage 3: Cows lying flat and severely depressed

What you don't see...
- Subclinical:
 - Not detectable or producing effects that are not detectable

Defining the Disease
- Subclinical hypocalcaemia
 - Low blood calcium concentrations without clinical signs of milk fever
 - Blood serum calcium level of less than 8.5 mg/dL 12 to 24 hours post-partum

Cascading Effect of Hypocalcemia
- Hypocalcemia
 - Clinical or Subclinical
 - Skeletal Muscle Function
 - Smooth muscle function
 - Abomasal motility
 - Displaced abomasum
 - Ketosis
 - Dry matter intake
 - Injury
 - Milk Production

Source: Gary Oetzel
Implications of Subclinical Hypocalcemia

- Result in lower milk production, poor reproductive performance, decreased responsiveness of the immune system
- Increased risk for:
 - Developing uterine prolapse
 - Retained placenta
 - Metritis (3.2 x)
 - Displaced abomasum
 - Ketosis (1.0 vs 0.7 mmol/L increased BHBA)
 - Longer median days open (123 vs 109 days)
- Affects nearly 50% of second and later lactation dairy cattle fed typical pre-fresh diets (Goff, 2008)
- If anions are used, percentage of hypocalcemia cows is reduced to about 15-25% (Getzel, 2004)

More Costly Than Clinical Milk Fever...

- Clinical Cases:
 - Herd size: 2,000 cows
 - Annual incidence of clinical milk fever: 2%
 - Cost per case: $300
 - Total cost: $12,000 per year

- Subclinical Cases:
 - Higher percentage of cows in herd
 - Herd size: 2,000 cows
 - Annual incidence of subclinical milk fever: 30%
 - Cost per case: $125
 - Total cost to producer: $48,750 per year

Current Preventative Practices

- Anionic salts in close-up dry cow feed
- 26.7% of operations
- 44.5 % of cows in US
- Limited potassium in dry cow ration
- 46.9% of operations
- 62.8% of cows in US

Minimizing Hypocalcemia

- Nutritional means of prevention
 - Low calcium diets pre-fresh (dietary Ca restriction)
 - Low potassium forages/diets pre-fresh
 - Feeding anionic salts for 21+ days pre-fresh (dietary acidification)
 - Supplemental dietary Mg
- Individual cow treatments;
 - Oral supplementation
 - Intravenous preparations

Dietary Calcium Restriction

- Require very low calcium intake to work best
 - <20 g/day
- Activates the Ca homeostatic mechanisms
 - PTH is increased prior to calving
- Must avoid pre-partum alfalfa
 - Utilize grass hay with additional corn silage

Dietary Acidification

- More important controlling milk fever than calcium intake
- Lowering pre-fresh DCAD by 300 mEq/kg (136 mEq/lb) results in:
 - 5.1 x reduction in clinical milk fever
 - Decrease dry matter intake by 11.3%
 - Decrease urinary pH from 8.1 to 7.0
Dietary Magnesium

- Magnesium plays an important role in maintaining calcium homeostasis.
- Higher pre-fresh dietary Mg lowers risk.
- Mg is needed for parathyroid hormone release.
- Mg is needed to synthesize active Vitamin D.
- Suggest 0.30 to 0.45% Mg in diet dry matter.
- ~40 to 50 grams of Mg per day.

Treatment of Hypocalcemia

Stage 2 and Stage 3

- Intravenous calcium.
- Do not give oral administration to down cow.
- To reduce risk of relapse:
 - Additional oral calcium once alert and able to swallow.
 - 2nd oral supplementation approximately 12 hours later.

Source: Thilsing Hansen, et al., 2002; Oetzel, 2011.

Treatment of Hypocalcemia

Stage 1

- Oral administration.
- Best approach for standing cows with hypocalcemia.
- Do not give IV Ca to standing cows.
- Cows absorb oral Ca rapidly and sustain blood levels for 4 to 6 hours, peak levels within 30 minutes.

Effect of IV Calcium Treatment

Strategic Use of Oral Ca Boluses

- Early stage 1 milk cases:
 - Cold ears, wobbly, tricep tremors, poor GI.
 - One dose now, one does 12 hours later.
- After successful IV treatment of down cows:
 - One dose after cow is up and swallowing, one dose ~12 hours later.
- Off feed early lactation cows.
 - Cover for secondary hypocalcemia.

Forms of Calcium for Oral Administration:

- Calcium chloride.
- Calcium propionate.
- Calcium carbonate.
- Boluses of multiple calcium forms.
Preventative Treatments With Use of Oral Ca Boluses

- Herds with hypocalcemia problems:
 - Clinical cases
 - Jerseys
 - No anionic salts
 - High prevalence of measured hypocalcemia
 - Blanket supplementation 2+ lactation with oral Ca (2 doses)

- Herds without hypocalcemia problems
 - Supplement lame and high previous lactation milk cows with oral Ca (2 doses)

Non-Nutritional Factors

- Proper stocking density
- Avoiding excessive pen moves
- Segregating cows and heifers during transition period
- Heat abatement

Five Key Principles

- Second-lactation and greater cows have a transient hypocalcemia around calving
- Hypocalcemia is linked to other fresh cow problems
- Supplementation with oral calcium is preferred approach for supporting cows exhibiting early signs of milk fever but still standing
- Subclinical hypocalcemia has greater associated costs to dairy than clinical cases
- Even herds with successful anionic salts programs and minimal cases of milk fever will benefit from strategic use of calcium supplements

Dietary Strategies to Reduce Hypocalcemia

Tina Kohlman, Dairy & Livestock Agent
UW-Extension Fond du Lac & Sheboygan Counties
Presented at the Fond du Lac County Forage Council’s 2014 Dairy-Forage Day Friday, December 12, 2014